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ABSTRACT

The large size of conventional GPS L1/L2 controlled
reception pattern antennas (CRPA) has prevented them
from being installed on vehicles where available space for
antennas is limited. NAVSYS Corporation has developed
a miniaturized GPS L1/L2 Small CRPA (S-CRPA), under
contract to SPAWAR Systems Center (SSC) in San
Diego. This includes a 7-element L1/L2 antenna array
packaged in a 7-inch form factor. A single-frequency L1
version of the S-CRPA has been tested by SSC to
evaluate the antenna array performance when integrated
with GPS antenna electronics.

This paper will present the design of the dual-frequency
L1/L2 S-CRPA and the measurement results of the
antenna elements.

INTRODUCTION

This paper will present the design and test results of a
GPS dual-frequency (L1/L2) S-CRPA based on the
miniature antenna array technology developed at
NAVSYS. The test parameters include the antenna
reflection coefficient, voltage standing wave ratio, and
input impedance of individual antenna elements, the
mutual coupling between the antenna elements, and
satellite tracking measurements of the center antenna
element.
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MINIATURE ANTENNA ARRAY TECHNOLOGY

The main ideas of the miniature antenna array technology
are to reduce the footprint of the antenna array and at the
same time to preserve the half-wavelength (at L1
frequency) phase difference between the antenna
elements.” ' In order to achieve the above two
objectives, the size of each individual antenna elements
has to be small and the wavelength of the incoming GPS
signal has to be reduced before reaching the antenna
elements in the array. The wave front of the GPS signal
needs to be bent before reaching the antenna element in
such a way that the phase difference between the antenna
elements has the same characteristic as when the antenna
elements are located in the free space.

In the current implementation of the dual-frequency
(L1/L2) miniature antenna array, NAVSYS uses planar
microstrip antenna elements above high dielectric
substrates and a solid hemispherical high dielectric lens
above the antenna elements.

DUAL-FREQUENCY S-CRPA DESIGN

The NAVSYS dual-frequency (L1/L2) S-CRPA is shown
in Figure 1. This S-CRPA has been designed to fit within
a 77 diameter footprint. This footprint is a 50% reduction
in size from the existing 7-element GPS Antenna System
(GAS), in use by the Department of Defense, which has a
14” diameter. The configuration and physical dimensions
of the array are shown in Figure 2.
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Figure 1 Seven-inch seven-element dual-frequency

(L1/L2) S-CRPA (superstrate hemisphere on the left
and substrate on the right)

The specifications of the 7-inch 7-element dual-frequency
S-CRPA are summarized in Table 1. The antenna
elements are designed to operate in the GPS L1 and L2
frequency bands with sufficient bandwidths to receive the
C/A code, P(Y) code, and future M-code versions of GPS
signals. The seven elements are arranged in a hexagonal

pattern with a center reference element, which is similar
to the conventional CRPA.
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Figure 2 Configuration and dimensions of NAVSYS’
seven-inch seven-element dual-frequency (L1/L2) S-
CRPA

Table 1 Summary of specifications of NAVSYS’ dual-
frequency (L1/L2) S-CRPA

Center frequencies 1575.42 MHz (at L1)
1227.60 MHz (at L2)

Bandwidth 24 MHz at L1 (1575.42 +/-
12 MHz)
24 MHz at L2 (1227.60 +/-12
MHz)

Input impedance 500

Polarization Right-hand circular
polarization (RHCP)

Array size 7 inches diameter

Array height above 3.7 inches

metal ground plane

Array configuration Hexagon

Number of elements 7

Element type Stacked rectangular
microstrip patches

Feeding structure of | Single probe-feed
each dual-frequency
antenna element

Element size oc A/2 by A/2 inside substrate

materials

Element spacing oc A/2 inside superstrate at L1

Number of substrate 2
layers

Number of
superstrate layers

1 (solid hemisphere with a
diameter of 7 inches)

ANTENNA ELEMENT MEASUREMENT RESULTS

Reflection Coefficient
The measured reflection coefficients of the seven antenna
elements are shown in Figure 3 to Figure 8.
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the seven antenna elements in the frequency band
from 1175 to 1275 MHz
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Figure 14 Real part of the input impedance of the
seven antenna elements in the frequency band from

1525 to 1625 MHz
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Figure 15 Imaginary part of the input impedance of
the seven antenna elements in the frequency band
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Figure 16 Imaginary part of the input impedance of
the seven antenna elements in the frequency band
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Figure 17 Imaginary part of the input impedance of
the seven antenna elements in the frequency band
from 1525 to 1625 MHz

MUTUAL COUPLING BETWEEN ANTENNA
ELEMENTS

The transmission coefficient between the elements is used
to indicate the mutual coupling between them. The 21
mutual coupling measurements among the seven antenna
elements are shown in Figure 18 to Figure 23. The
strongest mutual couplings occur between three pairs of
diagonal antenna elements (between Element 2 and 5,
between Element 3 and 6, and between Element 4 and 7).
The worst case is between Element 4 and 7 at L2 band
with a mutual coupling of approximately —9.5 db. Except
for the diagonal pairs of antenna elements, the mutual
couplings between all the other pairs are always below —
14 dB.
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Figure 18 Mutual coupling between Element 1 (center
element) and Element 2, 3, 4, 5, 6, and 7



Mutual Coupling between Element 2 and Element 3,4, 5, 8, 7 [A0001231 M32(42 52 62,72]]
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Figure 19 Mutual coupling between Element 2 and
Element 3, 4, 5, 6, and 7
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Figure 20 Mutual coupling between Element 3 and
Element 4, 5, 6, and 7
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Figure 21 Mutual coupling between Element 4 and
Element 5, 6, and 7

Mutual Coupling between Element 5 and Element 6, 7 [A0001231 MB5(75)]
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Figure 22 Mutual coupling between Element 5 and
Element 6 and 7
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Figure 23 Mutual coupling between Element 6 and
Element 7

S-CRPA GPS SATELLITE TRACKING TESTS

Some of the preliminary results of GPS satellite tracking
tests with the dual-frequency (L1/L2) S-CRPA are shown
here. An L1/L2 GPS receiver from NovAtel is used in
these measurements. Since this is a codeless receiver, the
observed signal/noise ratios on the L2 channel are lower
than would be expected from a P(Y) code PPS receiver.
For comparison purposes, a reference L1/L2 antenna
(AT2775-16 from AeroAntenna Technology, Inc.) is used
with the same receiver right before the measurements
with the S-CRPA. Figure 24, Figure 26, Figure 28, and
Figure 30 show the measured C/N, of PRN 4, 9, 24, and
5, respectively, with the center element of the S-CRPA.
Figure 25, Figure 27, Figure 29, and Figure 31 show the
measured C/N, of those four PRNS, respectively, with the
reference antenna. As shown in these figures, the center
element of the S-CRPA can provide equivalent tracking
performance as a conventional GPS dual-frequency
(L1/L2) antenna.
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Figure 24 Measured C/N, of PRN 4 with Element 1 of
S-CRPA
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Figure 25 Measured C/N, of PRN 4 with a reference
antenna (AT2775-16 from AeroAntenna Technology,
Inc.)
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Figure 26 Measured C/N, of PRN 9 with Element 1 of
S-CRPA
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Figure 27 Measured C/N, of PRN 9 with a reference
antenna (AT2775-16 from AeroAntenna Technology,
Inc.)
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Figure 28 Measured C/N, of PRN 24 with Element 1 of
S-CRPA
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Figure 29 Measured C/N, of PRN 24 with a reference
antenna (AT2775-16 from AeroAntenna Technology,
Inc.)
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Figure 30 Measured C/N, of PRN 5 with Element 1 of
S-CRPA
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Figure 31 Measured C/N, of PRN 5 with a reference
antenna (AT2775-16 from AeroAntenna Technology,
Inc.)

CONCLUSION

The test results shown this paper demonstrate the
performance of NAVSYS’ dual-frequency (L1/L2) 7-
element Small CRPA (S-CRPA ). Previous testing and
modeling and simulation efforts have demonstrated the
performance advantages of the L1 version of this S-CRPA
antennal®*). The test results presented in this paper show
that the L1/L2 S-CRPA design can provide the same
performance advantages for dual-frequency GPS
operation while maintaining the advantage of the small
form-factor compared with a full-size CRPA antenna
array.
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