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ABSTRACT 
Inertial navigation with low-cost IMU’s can be an 
acceptable sole navigation source during short periods of 
GPS signal dropout due to intentional or unintentional 
interference.  However, as the dropout period continues, 
the inertial navigation error reach unacceptable levels. In 
this paper, a technique is presented where relative or 
absolute position estimates derived from onboard 
captured image data are used to update the inertial 
navigation solution during GPS dropouts.  This optical 
aiding technique is described and test results shown from 
aircraft and ground-based navigation trials. 
 
INTRODUCTION 
Several military and commercial platforms are currently 
installing navigation sensors concurrently with the 
introduction of high quality visual capabilities and digital 
mapping/imagery databases.  The Navigation/Electro-
Optic Sensor Integration Technology (NEOSIT) software 
application, developed for CECOM, is designed to 
optimally integrate navigation data, sensor imagery and 
image or terrain database to estimate and correct for 

errors in each data source.  The modular design is to allow 
the NEOSIT application to be used with sensors and 
navigation already installed on different host platforms 
and with digital mapping and imagery data sources with 
varying degrees of precision.  
 
The NEOSIT software application is designed to operate 
in three modes.  The first mode uses the precision 
GPS/inertial imagery metadata to extract target 
coordinates from the imagery.  The second mode is used 
to correct for offsets in the image or terrain database 
registration coordinates.  The third mode of operation is to 
provide a back-up navigation capability in the event of 
GPS drop-outs by applying reference points from the 
imagery to update the on-board navigation solution. 
 
NEOSIT SOFTWARE APPLICATION 
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Figure 1  NEOSIT Component Interfaces 

The NEOSIT application is designed to interface with the 
following components, as illustrated in Figure 1. 
 
GPS/Inertial Navigation System 
The integrated GPS/inertial navigation data is used to 
provide the geospatial reference data associated with the 
electro-optic sensor data.  The results presented in this 
paper were generated using NAVSYS’ GI-Eye product, 
shown in Figure 2. Examples of image rectification and 
target geo-location performance using the GI-Eye 
geospatial reference data are provided in reference [1]. 
 
Electro-Optic Sensor 
The NEOSIT application can be used to process data from 
a variety of different sensors including optical, IR, or 
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hyperspectral devices.  These sensors must only be 
capable of providing digital data in a standard image 
format to the NEOSIT application.  The Hasselblad 
digital frame camera shown in Figure 2 was used to 
provide the test data presented in this paper. 
 
GIS Geospatial Data 
The NEOSIT application can accept data from a variety 
of different digital data sources including government and 
commercial.  This includes rectified imagery, such as the 
Controlled Image Base (CIB), Digital Precision Point 
Data Base (DPPDD), digital terrain elevation data 
(DTED) and vector maps (such as VMAP or 
commercial equivalents).   
 

 
Figure 2  GI-Eye Product 
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Figure 3 Measurement Geometry 

GEOREGISTRATION ALGORITHM 
The core algorithm for all of the modes of operation of 
the NEOSIT software is the georegistration algorithm 
shown  in Figure 3. The estimated line-of-sight to any 
feature in the video image, derived in the navigation 
(North, East, Down) frame, can be computed by 
transforming the pixel derived line-of-sight vector in 

camera axes to the navigation frame using the inertial 
attitude data. 
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Since the camera location is known (xC), the target 
coordinates can be calculated through a least squares 
solution from multiple image data. The observed line-of-
sight to the target provides a measure of the offset 
between the estimated target location and the observed 
target location through the following equation. 
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This residual provides a measure of the following error 
sources: 
• Error in the feature coordinates ( Tx̂ ) (errors in the 

GIS data source) 
• Error in the camera location ( Cx̂ ) (errors in the 

navigation position solution) 
• Error in the estimate of the camera attitude (CB

N) 
(errors in the inertial attitude solution) 

 
This observability is the key to the video estimation 
process, enabling both target location errors and 
navigation errors to be estimated from the integrated 
navigation and image data.  
 
TARGET GEOLOCATION DATA 
To evaluate the image georegistration accuracy of the 
NEOSIT system, imagery and navigation data was 
collected from an aircraft at a nominal altitude of 1000m 
AGL [1].  The camera field-of-view was 28 degrees, and 
the image resolution was 2032x3056, yielding a ground 
pixel resolution of about 23 cm/pixel.  The collected 
imagery and associated navigation data were rectified and 
geo-registered using the ERDAS OrthoBase package in 
the Imagine software.  The navigation data was used “as 
is”, and no image tie-point processing was performed to 
improve the registration and rectification process.  A 
portion of a rectified mosaic (with UTM coordinates) and 
a sample region containing three image-boundaries from 
the mosaic is shown Figure 4.  (Although the quality of 
the image reproduction in this document is limited, it is 
hoped the reader can see that the mis-registration is on the 
order of a pixel).  This result shows the capability of the 
GPS/inertial metadata to ortho-rectify airborne imagery 
with no image tie-points and no image manipulation in 
producing the rectified results. 
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Figure 4 Rectified Mosaic Examples
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Using the same flight data as referenced in the 
previous section, a series of surveyed targets had 
their geo-coordinates computed.  These coordinates 
were derived by simply reading the latitude and 
longitude values in the rectified image mosaics.  
Table 1 summarizes the target geo-location 
performance of the system.  In this configuration, the 
system was using a WAAS DGPS receiver system to 
provide RTCM pseudo-range correction data for 
input into InterNav.  The targets were accurately 
surveyed with carrier-phase GPS, so the resulting 
targeting error is principally a combination of 
ownship position error and attitude error.  Since the 
absolute position accuracy of DGPS is on the order of 
1-1.5 meters, the 0.92 meter CEP from 1000m+ range 
indicates that, not only is the position solution good, 
but the attitude error is extremely small, clearly well 
under one mrad.  
Table 1  Geo-Location Performance from 
Rectified Imagery 

Point Avg East 
Error (m) 

Avg North 
Error (m) 

Avg dist 
(m) 

NSPL01 -0.11 -0.35 0.37 

CPES Blueberry 0.43 -0.87 0.97 

CPES Hort Hill -0.49 -0.32 0.58 

Tifton A – CoC -0.35 -2.23 2.26 

FAA TMA 0.20 1.14 1.16 

Tifton CBL 150 -0.31 0.20 0.37 

Tifton CBL 0 -0.15 0.28 0.32 

Tifton CBL 100 -0.24 0.20 0.31 

Excelsior reset 0.48 -1.77 1.83 

M 157 0.65 1.80 1.91 
Total RMS 0.47 1.27 0.92 
 
VIDEO-AIDING  NAVIGATION UPDATES 
Coupling video and navigation data can serve several 
different purposes. When a good navigation solution 
is available, it can be used to build new waypoint 
models for later use or to improve the accuracy of 
existing GIS-based waypoint models. It can also be 
used to provide target geo-coordinates for any object 
of interest. When GPS is denied, the system can 
operate in two modes. First, it can use previously-
stored waypoint models to provide absolute 
navigation updates, eliminating INS drift. 
Alternatively, it can create new waypoints even under 
GPS-denied conditions, which provide relative 
position-aiding to reduce INS drift. 
 
The required pixel measurements for the video aiding 
process can come from manually-cued objects in the 
scene or from a waypoint detection algorithm which 

automatically detects and localizes waypoint objects. 
The following sections describe an automated 
approach to waypoint modeling and detection and 
describe the method used to apply these 
measurements for navigation updating. 
 
Estimates are obtained by automatically localizing a 
model of a scene object, or landmark, in the image 
data. Accurate scene coordinates for the landmarks 
are required to generate absolute position estimates. 
These may be obtained from map data, or from the 
platform at times when accurate image sensor 
position and attitude estimates are available. For 
relative position estimates, the landmark is selected 
in one image, automatically modeled, and localized 
in subsequent images.  
 
MODEL GENERATION AND LOCALIZATION 
For position aiding, the operation of the system 
depends on the availability of a database of three-
dimensional object models. These models can be 
generated using GIS data (vector maps or 
CIB/orthoquad imagery in conjunction with DTED) 
or imagery collected from a platform with accurate 
navigation equipment (e.g., when GPS is not denied). 
Figure 5 shows a block diagram of the Model 
Generation process. 
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Figure 5 Model Generation and Localization 
Process 

Model generation begins with the selection of a 
feature. From the GPS/inertial reference data, it is 
possible to estimate the viewing parameters of the 
imaging sensor. These meta-data can be used to 
compute the geographic region that is in the field 
view of the sensor. A query is then performed on the 
GIS data to aid in the determination of the range to 
the selected feature. 
 
As shown in Figure 6, this approach results in a 
model that may have a large position uncertainty 
along the line-of-sight, depending on the accuracy of 
the information used to estimate the range to the 
feature. This error can be reduced by combining data 
from multiple images as discussed below. 
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Figure 6 Model Generation and Localization 

When an accurate navigation solution is available, 
the offset between the predicted feature location 
based on the GPS/inertial data and the actual location 
observed from within the video frame is a function of 
the error in the recorded location for that feature 
within the model database. If the specific model 
contained in the database was constructed using a 
single image and digital elevation map, the model 
position error will be principally along the line-of-
sight in the original image. This line-of-sight is 
projected into subsequent images based on the 
platform navigation solution. It is then possible to 
search along the line-of-sight to locate the model in 
subsequent images. Multiple range hypotheses are 
calculated for the purposes of matching the model to 
multiple images. The results are used to improve the 
model contained in the database. 
 
For GIS-base models, the location and attitude of 
each sensor image is used to compute a projection of 
the image onto the map and identify a region of 
interest within the database. A query is performed on 
the GIS data to identify any features that fall within 
this region. The features that are returned from this 
query are then processed by a feature extraction 
algorithm where their precise coordinates are 
detected within the image data.  
 
To generate a model, a series of image-processing 
operations are performed which extract edges from 
the region of interest and look for salient line features 
using a Hough-transform-based algorithm[2,3]. Figure 
7 shows an example of the model extracted from a 
building. The model is stored on-board as a simple 
list of line segment (lat/lon/alt) coordinates, greatly 
reducing storage requirements compared with image-
based correlation approaches. 
 

 
Figure 7 Model Extraction 

Models can also be extracted directly from GIS 
vector products, bypassing the need for airborne 
reference data.  
 
MODEL DETECTION 
Given a pre-loaded or dynamically-extracted model, 
the navigation aiding process must then be able to 
localize that model within a scene. This match 
process uses a multiple-hypothesis chamfer-matching 
approach. Based on the current navigation (position 
and attitude) and model uncertainty, a region of 
interest (ROI) is selected which should contain the 
waypoint object. A distance transformation image is 
produced for each match image by first performing 
Canny edge detection on the region of interest and 
then computing a distance transformation.  The 
distance transformation image or “distance map” is 
the input to the chamfer match function.[4,5]  Edges 
appear as black pixels and other pixels appear lighter 
the farther they are from edges. A gradient descent 
function[6] is used to find the best match location 
between the model and the scene. To avoid spurious 
local minimum detections, multiple starting points 
are used in the distance map. Also, multiple models 
representing different range hypotheses can be 
applied to the same distance map at very little extra 
computational cost, allowing a large target 
uncertainty to be searched efficiently. 
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Figure 8 ROI and Detected Model 

 
Figure 9 Gradient Descent in ROI Distance Map 

Figure 8 and Figure 9 show an example of the results 
obtained from running the chamfer match function 
with an initial navigation error. The blue model 
denotes the expected model location at the center of a 
yellow uncertainty box derived from the model and 
navigation uncertainty. The red outline shows the 
minimum-error match location. The expected range-
to-target is determined from DTED and the onboard 
navigation solution, with a corresponding level of 
uncertainty from both contributors. A series of range 
hypotheses are selected spanning this uncertainty. 
Corresponding hypotheses are generated, then 
projected into candidate images. The best target 
location match is then determined using the most 
likely hypothesis over a series of images.  
 

A similar example using a model generated from a 
vector road database is shown in Figure 10. The 
complex surface of the distance image shows the 
utility of using multiple hypotheses for the starting 
point of the gradient-descent minimization. 
 

 

 
Figure 10 Detection of model derived from VMAP 
(top) expected and detected model in image (bot) 
model on distance map 

NAVIGATION ERROR ESTIMATION 
The pixel observation residual between the expected 
and measured model position can be used to observe 
both the target coordinate error and the navigation 
error.   Observability of the navigation error requires 
multiple observations, either from multiple waypoints 
or to the same waypoint at different times during 
aircraft maneuver. To enable updates to be applied 
correctly from pixel observations taken at different 
times, the update equation takes into account the 
error propagation of the inertial error states between 
times, using standard state-transition matrix 
techniques. The internal navigation states that can be 
observed using this equation include the navigation 
solution errors and instrument errors. A minimum 
implementation would include three position states, 
three velocity states and three alignment error (ψ) 
states, or a total of N=9 states. Additional states are 
also included in the inertial Kalman Filter for 
accelerometer and gyroscope bias, scale factor and 
misalignment errors. 
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AIRBORNE TEST RESULTS 
The aerial data shown earlier [1], was also used to 
test the Model Detection and Navigation Update 
algorithms.   Models were generated of suitable 
landmarks in this area and the model update function 
was then used to localize the models using multiple 
images using the NEOSIT Target Geolocation 
capability. A second set of navigation data were then 
generated, without the use of GPS aiding, to emulate 
the effect of navigating through the same are in the 
event of GPS jamming. 
 
Using the model detection algorithms described 
above, a navigation solution was computed using 
only INS data with image aiding. The NED-frame 
difference between the DGPS navigation solution and 
the image-aided navigation solution is shown in 
Figure 11.   
 

 
Figure 11 Airborne Navigation Performance with 
Image Aiding 

For the first 500 seconds, no object models were in 
view, and the free-inertial navigation solution drifted 
away from truth. Once a model was visible, the 
estimation software applied a correction to the 
navigation solution. Note that, after this correction 
was applied, the error again began to accumulate but 
that the growth of the error with respect to time was 
reduced, indicating that position, velocity and attitude 
error were observed and reduced. As more models 
came into view, the error was better observed. At 
t=650 seconds, the error even approached the 
accuracy of the original DGPS-aided navigation 
solution despite having no GPS data for over ten 
minutes and image aiding in only the previous three 
minutes. In this test, no models were available after 
t=750 seconds, so the inertial solution again began to 
degrade after that time. 
 
GROUND-BASED TEST RESULTS 
A similar test was conducted with ground-based data. 
Figure 12 shows examples of the region-of-interest 

and measured detection image model, in this case a 
signpost.  

 
Figure 12 Ground-based image aiding test 

This single model was used for navigation updates 
during a period spanning the collection of twelve 
images.  The result of this test is shown in Figure 13.  
Note that image updates were able to maintain the 
navigation error to less than one meter while the 
object model was in view. At t=100 seconds, the 
model was no longer in view and the navigation error 
began to accumulate. 

 
Figure 13 Ground Based Navigation Performance 
with Image Aiding 

 
SUMMARY 
The NEOSIT software application includes a 
combination of GPS/inertial navigation, image-
processing and georegistration and navigation update 
functions that provides the ability to couple image 
measurements into the navigation solution to bound 
the inertial navigation solution drift when GPS 
dropouts occur, for example from jamming. The 
results using both terrestrial and aerial systems 
clearly demonstrate the ability of the system to 
observe the error present in the navigation solution 
using imagery and correct the navigation solution for 
the observed error. With as few as two or three video 
navigation updates per minute, an accurate navigation 
solution can be maintained using images that were 
previously registered with the GPS/inertial targeting 
system.  When using CIB imagery or VMAP 
registered Models to apply the navigation updates, 
the accuracy of the final solution will also be affected 
by the registration quality of the reference data. 
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