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ABSTRACT 
 
This paper details an advanced wideband adaptive 
beamforming algorithm for multi-channel radar systems 
that is currently in the process of being implemented in an 
FPGA.  This approach models the entire frequency 
spectrum and linearly tracks statistical source covariance 
changes over frequency. achieved using a technique called 
derivative based updating (DBU). The novel aspect of this 
algorithm is its application in the frequency domain to 
track jammer source variations in angle as a function of 
frequency. This algorithm is compared with a traditional 
subband ECCM technique for multiple jamming 
scenarios.  Front-end array hardware recommendations 
are also considered in this presentation.  The baseline 
front-end architecture involves use of non-overlapping 
subarrays to reduce the number of digitized channels.  An 
overlapping architecture is recommended that gives 
greater flexibility and control over spatial ambiguities. 
 With wider operating bandwidths come increased 
processing demands on the beamforming hardware.  By 
taking advantage of the increasing processing power 
available in commercially available Field Programmable 
Gate Arrays (FPGA), and with the increasing speed of 
modern digital interfaces, it is becoming increasingly 
feasible to perform wideband adaptive processing in the 
digital domain, where advanced beamforming techniques 
can be exploited to realize performance and flexibility 
benefits of a portable firmware-based implementation. 
 

1. INTRODUCTION 
The need for high-resolution radar imagery and accurate 
target identification is in high demand.  Both of these 
applications require high bandwidth radar waveforms to 
provide the sensor with required range resolution.  As 
technology improves to allow increasing bandwidths, 
electronic counter-countermeasure (ECCM) technology 
must also follow to allow such sensors to function in 
hostile jamming environments. Adaptive beamforming 
(ABF) algorithms can counter jamming threats by greatly 
attenuating power from the jammers’ directions.  By 
effectively eliminating power from jamming, while still 
maintaining gain at the aimpoint, the radar is able to 

spatially focus its aperture and maintain functionality.  
Historically, radars have employed narrowband ABF 
technology, which appropriately nulls jamming 
interference for a specific frequency.  However, as 
bandwidths increase, the narrowband assumption becomes 
invalid as wideband jammers will appear to spread in 
angle.  This spreading allows the jammers to deny greater 
area to the sensor, limiting the sensor’s usefulness, and is 
inherent with narrowband phase-based steering. 
 This paper presents a wideband derivative based 
updating (DBU) adaptive beamforming (ABF) algorithm 
and compares its performance with the more traditional 
Subband ABF (SABF) algorithm.  The paper includes 
details relating non-adaptive or conventional 
beamforming (CBF) algorithms to the adaptive 
algorithms. 
 The DBU-ABF algorithm has several key advantages 
over SABF: 
• Wideband beams vary smoothly over frequency 

reducing signal distortion 
• Narrower jammer extents to minimize area denied by 

jamming 
• Natural wideband modeling without forcing a 

narrowband solution to be wideband 
• More accurate covariance modeling with more 

available training samples 
• Works naturally with stretch processing for high 

bandwidth operation 
 A variety of features are discussed in detail, such as 
wideband beamforming, tapering and colored noise 
loading for sidelobe suppression, and white noise gain 
constraints for adaptive beam control.  Finally, an 
approach is outlined for FPGA implementation. 
 

2. SENSOR CONFIGURATION 
The sensor configuration used in this paper was chosen to 
better control the grating lobes that occur with standard 
non-overlapped subarray configurations.  This 
configuration is defined by the following parameters: 
•  14 horizontal subarrays with  2/3 overlap 
• =seN 48 elements per subarray 

• =sed 16 element subarray phase center spacing 
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 With 2/3 overlapped horizontal subarrays, the 
subarrays overlap such that the majority of the elements 
participate in three subarrays. 
 Figure 1 shows pictorially how the individual array 
elements are combined to form subarrays.  The combining 
process begins with analog time-delay beamsteering to 
align the element in time with respect to a selected AOI.  
Also guard channels are tapped and an array taper is 
applied.  Next, a subarray taper is applied to the elements 
forming each subarray.  The subarray taper is real valued, 
and the same subarray taper is applied to each subarray.  
Since each individual element participates in up to 3 
subarrays, element signals are split up to 3 ways before 
the subarray tapers are applied.  Following the subarray 
taper, the elements involved in each subarray taper are 
added together in the subarray formation step.  Then each 
subarray formation signal is demodulated, IQ processed, 
and digitized to produce a complex data channel. 
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Figure 1:  2/3 overlapped subarray architecture 

 To demonstrate the motivation for selecting this 
configuration, the beampattern was calculated for it and 
for a non-overlapped configuration consisting of 16  
subarrays, each consisting of 16 antenna elements.  A full-
array taper is applied to both configurations, as described 
in [1].  The beampattern plot for the standard non-
overlapped configuration is shown in Figure 2, and 
beampattern plot for the overlapped configuration 
described in this section is shown in Figure 3.  
 

 
Figure 2:  Beampattern of 
non-overlapped configuration 

Figure 3:  Beampattern of 
overlapped configuration 

 In these plots the red beampattern illustrates a very 
special case, where the subarray nulls directly counter the 
beampattern grating lobes that would normally be spaced 
at the same locations.  However, when the beam is shifted 
slightly, the grating lobes emerge.  This effect is even 
more prevalent in the absence of the full-array taper.  Note 
how the subarray beampattern envelope is much tighter 
(3x actually) due to the subarray overlapping.  In this 
configuration all of the grating lobes are controlled to 
remain below -40 dB, while the mainlobe is broadened to 
allow for simultaneous beam scanning. 
 

3. CONVENTIONAL AND ADAPTIVE 
BEAMFORMING 

3.1. Narrowband Conventional Beamforming 
Most beamforming techniques are based on the 
computation of a replica signal, or a steering vector, for 
signals arriving from an angle θ  with a center frequency 
f , given as 
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Since ( )θsin  is nonlinear, we define ( )θφ sin=  to be the 
cosine of the signal angle relative to the array manifold, or 
the signal cosine cone-angle.  In the narrowband case or 
when irreverent, the frequency f is left out and the 
steering vector is written simply as ( )φv~ . 

Due to the hardware subarray formation, the steering 
vectors presented in (1) do not represent the signal that is 
actually recorded.  In fact, the recorded signal is a linear 
combination of the array elements and thus the recorded 
signal replica may be specified as 

( ) ( )ff ,,~ φφ Cvv = , (2
) 

where the ZXaux NNNN ×+  subarray formation matrix, 
C , linearly combines the array elements to form the 
output channels that are digitally sampled.  The subarray 
formation matrix combines the combinatory effects of the 
full array and subarray tapers (if used) and the subarray 
formation steps.  The hardware time-delay steering effects 
are not encompassed by this matrix. 

Herein, we refer to non-adaptive beamforming as 
conventional beamforming (CBF).  Conventional 
beamforming consists of computing steering vectors for a 
narrowband (tone) signal (at the radar center frequency) 
arriving from a set of hypothetical directions. 

For CBF beamforming, the normalized full array 
taper weights are applied to the data to restore the taper 
effect to the data.  These denormalizing values may be 



realized as a diagonal matrix that may be directly applied 
to the steering vectors as 

( ) ( )φφ vDv ~
normCBF = , (3

) 
Finally, the unit gain response may be computed as 

( ) ( )
( ) ( )φφ

φ
φ

vv

xv
H

t
H

CBFty =, , (4) 

where tx  denotes the channel data vector for time t .  
This equation is repeated for all hypothesis cosine cone-
angles, φ , and time instances, t . 

Computing a unit gain response may be desired for 
some applications where further adaptive processing  is to 
be performed to mitigate clutter.  However, the noise floor 
level varies over φ  due to the subarray beampattern.  For 
signal detection, a noise balanced or deshaded response 
may be desirable.  This response may be computed as 

( ) ( )
( ) ( )φφ

φ
φ

CBF
HH

CBF

t
H

CBFtz
vCCv

xv
=, . (5) 

 
3.2. Wideband Conventional Beamforming / Time-
Delay CBF (TDCBF) 
Wideband beamforming may be considered by forming 
steering vectors as a function of frequency, or 
equivalently, performing an element specific time-delay 
for each desired beam, as 

( ) ( )ff normTDCBF ,~, φφ vDv = , (6) 
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where fX  denotes the data vector in the frequency 
domain for frequency f .  Here, the spatial combination is 
done in the frequency domain by applying a fast-time FFT 
to the data.  When applied in the frequency (FFT) domain, 
the time-delays correspond to circular time-delay shifts in 
fast-time.  This equation is again repeated for all 
hypothesis cosine cone-angles, φ , and frequencies, f . 

A time-domain version of (7) may be written as 
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where [ ]Ttntntntnt xxxx LL δδδδ 2,2,1,,1, −+−++−=x  
and tnx ,  is a complex data sample from channel n and 
time t . 
 
3.2. Narrowband Adaptive Beamforming 
The standard approach to adaptive beamforming is to 
utilize the minimum variance distortionless response 
(MVDR) beamforming result [2].  Given time snapshots 
of the data from each channel stacked in a vector, 

[ ]TtNNttt aux
xxx ,,2,1 += Lx , where inx , is the complex 

data sample from channel n and time index t , a 
covariance matrix is constructed as 

IxxR δ+= ∑
t

H
tt

tN
1 , (11) 

where tN  equals the number of time snapshots summed, 
δ is the system noise power level and I  is an 
( ) ( )auxaux NNNN +×+  identity matrix. 

A steering vector, ( )φv , is necessary to provide the 
desired phase response of the array to the particular 
direction of interest the beam should be directed.  The 
steering vector must be combined as the elements were 
combined into subarrays, thus the appropriate channel 
steering vector is given by ( )φv~  from (2).  Note that for 
adaptive beamforming, the taper denormalization matrix, 

normD , is not applied, such that the steering vector 
matches the normalization of the data. 

Once R  and ( )φv~  are computed, the resulting 
MVDR weight vector is obtained as 

( ) ( )
( ) ( )φφ

φφ
vRv

vRw ~~
~

1

1

−

−

= HMVDR . (12) 

Finally, the ABF output at time index t  is computed 
by multiplying the weight vector against the data as 

t
H

MVDRt xwy = . (13) 
As (12) normalizes the weight vector by the steering 

vector response, it provides the unit gain response 
equation that may be compared with (4). 

The deshaded version of the weight vector is given as 

( ) ( )
( ) ( )φφ

φφ
vRv

vRw
~~

~

1

1

−

−

=
HAMF , (14) 

where the noise power is adaptively estimated in the 
denominator using the covariance matrix.  This is 
commonly called the adaptive matched filter solution and 
is technically no longer MVDR.  A deterministically 
deshaded weight vector may be specified as 

( ) ( )
( ) ( ) ( )φφ

φφ
vCCv

vRw
~~

~

1

1

−

−

=
HH

DMF , (15) 

where the matrix in the denominator is substituted by the 
deterministic covariance noise matrix HCIC . 
 
3.2. Wideband (Subband) Adaptive Beamforming 
Wideband adaptive beamforming is more complex than 
wideband CBF processing, since a covariance matrix must 
be computed for each frequency.  Since it is very difficult 
to obtain accurate covariance matrices for individual 
frequencies, the frequency spectrum is separated into 
subbands, where the assumption is that the subbands are 



narrow enough such that narrowband ABF may be applied 
separately in each band. 

Thus the first step is to create a filterbank of M  
analysis and synthesis filters that may be used to break 
apart the individual subbands and combine them back 
together to reform a fullband signal.  There are a number 
of techniques to do so, but they consist of two categories, 
perfect reconstruction (PR) and near-perfect 
reconstruction (NPR).  PR filters exactly recreate the 
original signal, while NPR filters sacrifice perfect 
reconstruction to obtain properties such as low-sidelobes 
or better frequency containment. 

Subband adaptive beamforming has a fundamental 
difficulty in that as tighter subbands are required, more 
data samples are required to obtain accurate covariance 
estimates.  Thus, the number of subbands is really limited 
by the number of samples in a pulse repetition interval 
(PRI), the number of adaptive data channels, and the 
desired accuracy of the covariance matrix. 

Figure 4 illustrates the frequency response associated 
with each of the filterbank filters used in this paper.  The 
magnitude responses are identical between the analysis 
and synthesis filterbanks, since the filters were generated 
using the pseudo-quadrature mirror filter technique. 

 

 
Figure 4:  16-Band NPR filterbank 

4. TIME-DELAY DBU ADAPTIVE 
BEAMFORMING  

4.1. Motivation 
This algorithm uses a technique called derivative based 
updating (DBU) to effectively compute a wideband 
covariance matrix.   

This technique involves an FFT operation so that the 
ABF algorithm may be applied in the frequency domain.  
Furthermore, it involves applying time-delays to each 
individual channel, as with the TDCBF algorithm outlined 
in Section 3.2, to pre-steer a non-adaptive wideband beam 
in the direction of interest before ABF is utilized.  Thus, if 
the ABF algorithm were replaced with a channel sum, the 
result would be a non-adaptive beam output. 

Since this technique is applied in the frequency 
domain with pre-steered data, it may be likened to 
applying ABF in a subband architecture with a very large 
number of subbands.  However, to avoid ABF 
discrepancies over frequency (or subband-to-subband) 

that may lead to spectral or range distortion, derivative 
based updating (DBU) is applied, which smoothes the 
adaptive weight vectors over frequency and allows the 
ABF algorithm to train with nonstationary data [3].  Also, 
a white noise gain constraint (WNGC) is employed for 
beam control.  
 
4.2. Derivative Based Updating (DBU) 
Derivative based updating (DBU) is a technique that 
allows the covariance matrix to be trained and applied 
with nonstationary data.  DBU has been applied in the 
past for rapidly moving jamming scenarios [4,5].  In the 
case of wideband adaptive beamforming, the data will be 
nonstationary if a jammer is present at an angle other than 
the beam’s aimpoint angle.  Even though the data has 
been pre-steered via time-delays to the direction of 
interest with (6), signals arriving at other angles will still 
vary in phase over frequency.  This causes the jammer 
direction to apparently change as a function of frequency.  
DBU can account for this by tracking the jammer’s angle 
derivative. 

While the time-delays have been applied to each 
channel, the channels are not yet summed together, as this 
is done adaptively to mitigate jamming.  To accomplish 
this, the standard covariance matrix in (11) is augmented 
as 
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ffk  , a normalized frequency 

index that maps f  between -1 and +1. 
Next, the DBU weight vector and its derivative is 

computed as  
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where ( )φ0w  denotes the DBU weight vector solution at 
0=k  and ( )φw&  denotes its derivative.  The zero angle 

steering vector, ( )0~v ,  is used because the data has been 
already pre-steered via time-delays.  Thus, the weight 
vector appropriate for other frequency indices is provided 
by 

( ) ( ) ( )φφφ www &kk += 0 . (18) 
Thus, a different weight vector is computed for each 

FFT frequency.  The weight vectors are multiplied and 
channel summed against the pre-steered data to form the 
output beam.  A final IFFT may be used to convert the 
data back into the time-domain, if necessary. 

This allows the ABF weight vector to linearly change 
over frequency to track the jammer’s apparent moving 
angle as a function of frequency, providing a truly 
wideband ABF. 



4.3. DBU with WNGC and Colored Noise Loading 
Since the DBU weights vary linearly with respect to 
frequency in (18), it can be shown that if the weight 
vectors at the frequency extremes satisfy the WNGC [6], 
then all the intermediate frequency weight vectors also 
satisfy the WNGC.  Thus, only the weight vectors 
associated with the frequency extremities need be checked 
to satisfy the WNGC.  As previously mentioned, if either 
extremity fails the WNGC, then additional diagonal 
loading is added to (16) until the extremity weight vectors 
satisfy the WNGC. 

Colored noise loading is again desirable to control the 
near-in sidelobes [6].  As before, the identity matrices in 
(16) may be replaced with the colored noise loading 
matrix for initial loading and for WNGC loading to 
control the sidelobes. 
 

5. SIMULATION RESULTS 
5.1. Simuation 1: Strong Wideband Jamming  
In this simulation the environment is configured as shown 
in Table 1, where the jamming environment is defined in 
terms of jammer-to-noise ratio per element (JNR), cosine 
cone-angle (CCA), beamwidths from broadside or time-
delay steered direction (BmWdths), degrees from 
broadside (deg), source bandwidth in GHz (BW), source 
center frequency in GHz (CF), and category (Cat), which 
can either be mainbeam (MB), or sidelobe (SB). 
 

JNR CCA BmWdths Deg BW CF Cat 
10 dB 0 0 0 2 10 MB 
10 dB -0.04 -4 -2 2 10 MB 
10 dB 0.148 19 8.5 2 10 SB 

Table 1:  Strong Wideband Jamming 

As shown in Figure 5, the strong jamming 
overwhelms the sidelobes of the conventional 
beamformer.  Thus, the jamming consumes nearly the 
entire angle space available to the radar. 

 

 
Figure 5 TDCBF Response 1 

 
Figure 6 TDCBF Response 2 

 
Figure 7 and Figure 8 show the Subband ABF and 

DBU-ABF results.  These algorithms adaptively null the 
jamming unless a beam is pointing directly at (or very 
near) to a jammer.  The DBU-ABF has a narrower jammer 

extent, especially for the jammer located 4 beamwidths 
left of broadside.  Traces of grating lobe leakage for the 
sidelobe jammer are evident in both figures.  However, it 
is more prominent with the Subband ABF algorithm. 

 

 
Figure 7  SABF Response 1 Figure 8 DBU-ABF Response 1 

 
5.1. Simulation 2: Mixed Bandwidth Jamming  
This simulation mixes together jammers with various 
bandwidths and center frequencies.  Here, strong 
wideband, halfband, and quarter-band jammers are 
present with various center frequencies.  Also, a strong 
CW (tone) jammer is also present, as outlined in Table 3. 
 

JNR CCA BmWdths Deg BW CF Cat 
-10 dB -0.035 -4 -2 2 10 MB 
-10 dB -0.017 -2 -1 1 10.25 MB 
-10 dB 0.017 2 1 0.5 9.75 MB 
-20 dB 0.035 -4 2 0 9.5 MB 

Table 2:  Mixed Bandwidth Jamming 

Figure 6 shows the TDCBF response to the mixed 
jamming scenario.  Each of the 4 jammers are visible in 
the figure, although the CW jammer is hard to see because 
of its narrow bandwidth. 

Figure 9 and Figure 10 compare the Subband ABF and 
DBU-ABF results.  The Subband ABF algorithm has 
good frequency containment but worse spatial extent.  
Furthermore, the ends of the frequency portions of each 
jammer are distorted due to the subband band edges. 
 

 
Figure 9 SABF Response 2 Figure 10 DBU-ABF Response 2

The DBU-ABF algorithm has better spatial extent, 
but each of the colored jammers leaves behind a “wake” 
of frequency.  This is caused by the colored noise loading 
trying to compensate for being close to the jammer angle.  
The algorithm is trading off sidelobe suppression for a 



close-in null, and some sidelobe leakage from the other 
jamming sources is occurring.  This may be corrected by 
adjusting the colored noise loading parameters. 

 
8. HARDWARE IMPLEMENTATION DESIGN 

A design for a firmware-based implementation of the 
DBU-ABF algorithm has been created and is under active 
development as the next stage of this project.  Figure 11 
illustrates the FPGA design architecture for a single beam.  
The design is based on having the input and output data 
stream on and off the FPGA.  Thus, the input data streams 
onto the chip one range gate at a time, simultaneously for 
each of the 16 proposed complex channels.  Thus 16 real 
and 16 complex 8-bit values will stream onto the device 
each clock cycle.  The output will be a single complex 
value for each beam that streams off the device each clock 
cycle.  With this streaming architecture, the required 
matrix operations are much simpler and require fewer 
resources. 
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Figure 11 FPGA firmware block diagram 

The first step in the diagram is to convert the 
incoming data into the frequency domain.  A frequency 
dependent pre-steering vector is applied to the incoming 
data.  Next, the data streams to an external dual-port RAM 
that stores the pre-steered channel data until the ABF 
weights have been computed.  The RAM is dual-ported 
such that data may be stored while data elsewhere in the 
RAM maybe read.  This allows concurrent input and 
output data streams. 

The next step in the input chain is to perform the 
DBU stacking operation.  This simply stacks the 16 
channel data on top of itself creating a 32 channel vector, 
where the bottom portion is multiplied by it’s frequency 
index number, k .  The final step in the input chain is to 
accumulate the inverse covariance matrix for the current 
PRI of input data.  Once all the samples in a PRI have 
streamed onto the device the DBU center and derivative 
weight vectors are computed using (17).  The data from 
the PRI then begins to stream out from the external RAM 
storage.  Simultaneously, the weight vectors are 
interpolated using (18) for the current frequency index. 

Finally, the current frequency dependent weight 
vector is multiplied against the data and summed over the 
channel dimension forming the final scalar output value, 
and data is streamed off of the device in the frequency 
domain.  If desired, a final streaming IFFT may be 
inserted to convert the data back to the time-domain. 
 

9. CONCLUSIONS 
The wideband DBU-ABF algorithm is a robust algorithm 
for wideband beamforming.  In this paper we have 
demonstrated that it offers several key benefits over 
Subband adaptive beamforming in that it truly models the 
wideband system, allowing it to linearly vary its 
beamforming characteristics over frequency.  Most 
importantly, it provides narrower jammer extents than 
Subband ABF with the same WNGC parameters.  This 
minimizes the area denied to the radar by interference or 
jamming.  Furthermore, it more accurately recovers the 
jamming signal for potential follow-on use with 
COMINT/SIGINT processing.  A COTS FPGA 
implementation design has been presented and is under 
active development.  Test results from this 
implementation with real data will be presented in 
subsequent papers. 
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