

WIDEBAND RADAR ADAPTIVE BEAMFORMING USING FREQUENCY-

DOMAIN DERIVATIVE BASED UPDATING

Ben Mathews (NAVSYS Corporation, Colorado Springs, Colorado, USA, benm@navsys.com)
Jacob Griesbach (SAIC, Colorado Springs, Colorado, USA, griesbachj@saic.com)

Alison Brown (NAVSYS Corporation, Colorado Springs, Colorado, USA, alison@navsys.com)

ABSTRACT

This paper details an advanced wideband adaptive
beamforming algorithm for multi-channel radar systems
that is currently in the process of being implemented in an
FPGA. This approach models the entire frequency
spectrum and linearly tracks statistical source covariance
changes over frequency. achieved using a technique called
derivative based updating (DBU). The novel aspect of this
algorithm is its application in the frequency domain to
track jammer source variations in angle as a function of
frequency. This algorithm is compared with a traditional
subband ECCM technique for multiple jamming
scenarios. Front-end array hardware recommendations
are also considered in this presentation. The baseline
front-end architecture involves use of non-overlapping
subarrays to reduce the number of digitized channels. An
overlapping architecture is recommended that gives
greater flexibility and control over spatial ambiguities.
 With wider operating bandwidths come increased
processing demands on the beamforming hardware. By
taking advantage of the increasing processing power
available in commercially available Field Programmable
Gate Arrays (FPGA), and with the increasing speed of
modern digital interfaces, it is becoming increasingly
feasible to perform wideband adaptive processing in the
digital domain, where advanced beamforming techniques
can be exploited to realize performance and flexibility
benefits of a portable firmware-based implementation.

1. INTRODUCTION
The need for high-resolution radar imagery and accurate
target identification is in high demand. Both of these
applications require high bandwidth radar waveforms to
provide the sensor with required range resolution. As
technology improves to allow increasing bandwidths,
electronic counter-countermeasure (ECCM) technology
must also follow to allow such sensors to function in
hostile jamming environments. Adaptive beamforming
(ABF) algorithms can counter jamming threats by greatly
attenuating power from the jammers’ directions. By
effectively eliminating power from jamming, while still
maintaining gain at the aimpoint, the radar is able to

spatially focus its aperture and maintain functionality.
Historically, radars have employed narrowband ABF
technology, which appropriately nulls jamming
interference for a specific frequency. However, as
bandwidths increase, the narrowband assumption becomes
invalid as wideband jammers will appear to spread in
angle. This spreading allows the jammers to deny greater
area to the sensor, limiting the sensor’s usefulness, and is
inherent with narrowband phase-based steering.
 This paper presents a wideband derivative based
updating (DBU) adaptive beamforming (ABF) algorithm
and compares its performance with the more traditional
Subband ABF (SABF) algorithm. The paper includes
details relating non-adaptive or conventional
beamforming (CBF) algorithms to the adaptive
algorithms.
 The DBU-ABF algorithm has several key advantages
over SABF:
• Wideband beams vary smoothly over frequency

reducing signal distortion
• Narrower jammer extents to minimize area denied by

jamming
• Natural wideband modeling without forcing a

narrowband solution to be wideband
• More accurate covariance modeling with more

available training samples
• Works naturally with stretch processing for high

bandwidth operation
 A variety of features are discussed in detail, such as
wideband beamforming, tapering and colored noise
loading for sidelobe suppression, and white noise gain
constraints for adaptive beam control. Finally, an
approach is outlined for FPGA implementation.

2. SENSOR CONFIGURATION
The sensor configuration used in this paper was chosen to
better control the grating lobes that occur with standard
non-overlapped subarray configurations. This
configuration is defined by the following parameters:
• 14 horizontal subarrays with 2/3 overlap
• =seN 48 elements per subarray

• =sed 16 element subarray phase center spacing

• ==
c

ses f
cdd

2
 subarray phase center spacing

 With 2/3 overlapped horizontal subarrays, the
subarrays overlap such that the majority of the elements
participate in three subarrays.
 Figure 1 shows pictorially how the individual array
elements are combined to form subarrays. The combining
process begins with analog time-delay beamsteering to
align the element in time with respect to a selected AOI.
Also guard channels are tapped and an array taper is
applied. Next, a subarray taper is applied to the elements
forming each subarray. The subarray taper is real valued,
and the same subarray taper is applied to each subarray.
Since each individual element participates in up to 3
subarrays, element signals are split up to 3 ways before
the subarray tapers are applied. Following the subarray
taper, the elements involved in each subarray taper are
added together in the subarray formation step. Then each
subarray formation signal is demodulated, IQ processed,
and digitized to produce a complex data channel.

Array Taper

IQ Receiver
I Q
A/D A/D

IQ Receiver
I Q
A/D A/D

IQ Receiver
I Q
A/D A/D

Subarray 1 Subarray 2 Subarray N Guard 1 Guard 2

Array Elements

Array
Manifold

IQ Receiver
I Q
A/D A/D

Subarray 3

Time-Delay Beamsteering

Subarray Formation
Subarray Formation

Subarray FormationSubarray Formation

Subarray Form
Subarray Form

Subarray Taper

Subarray Taper Subarray Taper
Subarray TaperSubarray Taper

Subarray Taper

IQ Rec
I Q

A/D A/D

IQ Rec
I Q
A/D A/D

Figure 1: 2/3 overlapped subarray architecture

 To demonstrate the motivation for selecting this
configuration, the beampattern was calculated for it and
for a non-overlapped configuration consisting of 16
subarrays, each consisting of 16 antenna elements. A full-
array taper is applied to both configurations, as described
in [1]. The beampattern plot for the standard non-
overlapped configuration is shown in Figure 2, and
beampattern plot for the overlapped configuration
described in this section is shown in Figure 3.

Figure 2: Beampattern of
non-overlapped configuration

Figure 3: Beampattern of
overlapped configuration

 In these plots the red beampattern illustrates a very
special case, where the subarray nulls directly counter the
beampattern grating lobes that would normally be spaced
at the same locations. However, when the beam is shifted
slightly, the grating lobes emerge. This effect is even
more prevalent in the absence of the full-array taper. Note
how the subarray beampattern envelope is much tighter
(3x actually) due to the subarray overlapping. In this
configuration all of the grating lobes are controlled to
remain below -40 dB, while the mainlobe is broadened to
allow for simultaneous beam scanning.

3. CONVENTIONAL AND ADAPTIVE
BEAMFORMING

3.1. Narrowband Conventional Beamforming
Most beamforming techniques are based on the
computation of a replica signal, or a steering vector, for
signals arriving from an angle θ with a center frequency
f , given as

()

()

()

()
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

=

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

=

M

M

M

M

φπ

φπ

φπ

θπ

θπ

θπ

φ

e

e

e

e

e

e

d
c
f

j

d
c
f

j

d
c
f

j

d
c
f

j

d
c
f

j

d
c
f

j

f

 4

 2
0

 2

exp

sin 4

sin 2
0

sin 2

exp,v

.

(1)

Since ()θsin is nonlinear, we define ()θφ sin= to be the
cosine of the signal angle relative to the array manifold, or
the signal cosine cone-angle. In the narrowband case or
when irreverent, the frequency f is left out and the
steering vector is written simply as ()φv~ .

Due to the hardware subarray formation, the steering
vectors presented in (1) do not represent the signal that is
actually recorded. In fact, the recorded signal is a linear
combination of the array elements and thus the recorded
signal replica may be specified as

() ()ff ,,~ φφ Cvv = , (2
)

where the ZXaux NNNN ×+ subarray formation matrix,
C , linearly combines the array elements to form the
output channels that are digitally sampled. The subarray
formation matrix combines the combinatory effects of the
full array and subarray tapers (if used) and the subarray
formation steps. The hardware time-delay steering effects
are not encompassed by this matrix.

Herein, we refer to non-adaptive beamforming as
conventional beamforming (CBF). Conventional
beamforming consists of computing steering vectors for a
narrowband (tone) signal (at the radar center frequency)
arriving from a set of hypothetical directions.

For CBF beamforming, the normalized full array
taper weights are applied to the data to restore the taper
effect to the data. These denormalizing values may be

realized as a diagonal matrix that may be directly applied
to the steering vectors as

() ()φφ vDv ~
normCBF = , (3

)
Finally, the unit gain response may be computed as

() ()
() ()φφ

φ
φ

vv

xv
H

t
H

CBFty =, , (4)

where tx denotes the channel data vector for time t .
This equation is repeated for all hypothesis cosine cone-
angles, φ , and time instances, t .

Computing a unit gain response may be desired for
some applications where further adaptive processing is to
be performed to mitigate clutter. However, the noise floor
level varies over φ due to the subarray beampattern. For
signal detection, a noise balanced or deshaded response
may be desirable. This response may be computed as

() ()
() ()φφ

φ
φ

CBF
HH

CBF

t
H

CBFtz
vCCv

xv
=, . (5)

3.2. Wideband Conventional Beamforming / Time-
Delay CBF (TDCBF)
Wideband beamforming may be considered by forming
steering vectors as a function of frequency, or
equivalently, performing an element specific time-delay
for each desired beam, as

() ()ff normTDCBF ,~, φφ vDv = , (6)

() ()
() ()ff

f
fy

H

f
H

TDCBF

,,

,
,

φφ

φ
φ

vv

Xv
= , (7)

where fX denotes the data vector in the frequency
domain for frequency f . Here, the spatial combination is
done in the frequency domain by applying a fast-time FFT
to the data. When applied in the frequency (FFT) domain,
the time-delays correspond to circular time-delay shifts in
fast-time. This equation is again repeated for all
hypothesis cosine cone-angles, φ , and frequencies, f .

A time-domain version of (7) may be written as

()
()

() ()00

0
,

,

vv

xv

H

c
dt

H
TDCBF s

ty
φ

φ = , (8)

where []Ttntntntnt xxxx LL δδδδ 2,2,1,,1, −+−++−=x
and tnx , is a complex data sample from channel n and
time t .

3.2. Narrowband Adaptive Beamforming
The standard approach to adaptive beamforming is to
utilize the minimum variance distortionless response
(MVDR) beamforming result [2]. Given time snapshots
of the data from each channel stacked in a vector,

[]TtNNttt aux
xxx ,,2,1 += Lx , where inx , is the complex

data sample from channel n and time index t , a
covariance matrix is constructed as

IxxR δ+= ∑
t

H
tt

tN
1 , (11)

where tN equals the number of time snapshots summed,
δ is the system noise power level and I is an
() ()auxaux NNNN +×+ identity matrix.

A steering vector, ()φv , is necessary to provide the
desired phase response of the array to the particular
direction of interest the beam should be directed. The
steering vector must be combined as the elements were
combined into subarrays, thus the appropriate channel
steering vector is given by ()φv~ from (2). Note that for
adaptive beamforming, the taper denormalization matrix,

normD , is not applied, such that the steering vector
matches the normalization of the data.

Once R and ()φv~ are computed, the resulting
MVDR weight vector is obtained as

() ()
() ()φφ

φφ
vRv

vRw ~~
~

1

1

−

−

= HMVDR . (12)

Finally, the ABF output at time index t is computed
by multiplying the weight vector against the data as

t
H

MVDRt xwy = . (13)
As (12) normalizes the weight vector by the steering

vector response, it provides the unit gain response
equation that may be compared with (4).

The deshaded version of the weight vector is given as

() ()
() ()φφ

φφ
vRv

vRw
~~

~

1

1

−

−

=
HAMF , (14)

where the noise power is adaptively estimated in the
denominator using the covariance matrix. This is
commonly called the adaptive matched filter solution and
is technically no longer MVDR. A deterministically
deshaded weight vector may be specified as

() ()
() () ()φφ

φφ
vCCv

vRw
~~

~

1

1

−

−

=
HH

DMF , (15)

where the matrix in the denominator is substituted by the
deterministic covariance noise matrix HCIC .

3.2. Wideband (Subband) Adaptive Beamforming
Wideband adaptive beamforming is more complex than
wideband CBF processing, since a covariance matrix must
be computed for each frequency. Since it is very difficult
to obtain accurate covariance matrices for individual
frequencies, the frequency spectrum is separated into
subbands, where the assumption is that the subbands are

narrow enough such that narrowband ABF may be applied
separately in each band.

Thus the first step is to create a filterbank of M
analysis and synthesis filters that may be used to break
apart the individual subbands and combine them back
together to reform a fullband signal. There are a number
of techniques to do so, but they consist of two categories,
perfect reconstruction (PR) and near-perfect
reconstruction (NPR). PR filters exactly recreate the
original signal, while NPR filters sacrifice perfect
reconstruction to obtain properties such as low-sidelobes
or better frequency containment.

Subband adaptive beamforming has a fundamental
difficulty in that as tighter subbands are required, more
data samples are required to obtain accurate covariance
estimates. Thus, the number of subbands is really limited
by the number of samples in a pulse repetition interval
(PRI), the number of adaptive data channels, and the
desired accuracy of the covariance matrix.

Figure 4 illustrates the frequency response associated
with each of the filterbank filters used in this paper. The
magnitude responses are identical between the analysis
and synthesis filterbanks, since the filters were generated
using the pseudo-quadrature mirror filter technique.

Figure 4: 16-Band NPR filterbank

4. TIME-DELAY DBU ADAPTIVE
BEAMFORMING

4.1. Motivation
This algorithm uses a technique called derivative based
updating (DBU) to effectively compute a wideband
covariance matrix.

This technique involves an FFT operation so that the
ABF algorithm may be applied in the frequency domain.
Furthermore, it involves applying time-delays to each
individual channel, as with the TDCBF algorithm outlined
in Section 3.2, to pre-steer a non-adaptive wideband beam
in the direction of interest before ABF is utilized. Thus, if
the ABF algorithm were replaced with a channel sum, the
result would be a non-adaptive beam output.

Since this technique is applied in the frequency
domain with pre-steered data, it may be likened to
applying ABF in a subband architecture with a very large
number of subbands. However, to avoid ABF
discrepancies over frequency (or subband-to-subband)

that may lead to spectral or range distortion, derivative
based updating (DBU) is applied, which smoothes the
adaptive weight vectors over frequency and allows the
ABF algorithm to train with nonstationary data [3]. Also,
a white noise gain constraint (WNGC) is employed for
beam control.

4.2. Derivative Based Updating (DBU)
Derivative based updating (DBU) is a technique that
allows the covariance matrix to be trained and applied
with nonstationary data. DBU has been applied in the
past for rapidly moving jamming scenarios [4,5]. In the
case of wideband adaptive beamforming, the data will be
nonstationary if a jammer is present at an angle other than
the beam’s aimpoint angle. Even though the data has
been pre-steered via time-delays to the direction of
interest with (6), signals arriving at other angles will still
vary in phase over frequency. This causes the jammer
direction to apparently change as a function of frequency.
DBU can account for this by tracking the jammer’s angle
derivative.

While the time-delays have been applied to each
channel, the channels are not yet summed together, as this
is done adaptively to mitigate jamming. To accomplish
this, the standard covariance matrix in (11) is augmented
as

∑
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+

=
f

H
ff

H
ff

H
ff

H
ff

f
dbu kk

k
N IXXXX

XXIXX
R

δ
δ

2
1 , (16

)

where 12
minmax

min −
−
−

=
ff

ffk , a normalized frequency

index that maps f between -1 and +1.
Next, the DBU weight vector and its derivative is

computed as
()
()

()
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ −

0
v

R
w
w 0~

10
dbuφ

φ
&

, (17)

where ()φ0w denotes the DBU weight vector solution at
0=k and ()φw& denotes its derivative. The zero angle

steering vector, ()0~v , is used because the data has been
already pre-steered via time-delays. Thus, the weight
vector appropriate for other frequency indices is provided
by

() () ()φφφ www &kk += 0 . (18)
Thus, a different weight vector is computed for each

FFT frequency. The weight vectors are multiplied and
channel summed against the pre-steered data to form the
output beam. A final IFFT may be used to convert the
data back into the time-domain, if necessary.

This allows the ABF weight vector to linearly change
over frequency to track the jammer’s apparent moving
angle as a function of frequency, providing a truly
wideband ABF.

4.3. DBU with WNGC and Colored Noise Loading
Since the DBU weights vary linearly with respect to
frequency in (18), it can be shown that if the weight
vectors at the frequency extremes satisfy the WNGC [6],
then all the intermediate frequency weight vectors also
satisfy the WNGC. Thus, only the weight vectors
associated with the frequency extremities need be checked
to satisfy the WNGC. As previously mentioned, if either
extremity fails the WNGC, then additional diagonal
loading is added to (16) until the extremity weight vectors
satisfy the WNGC.

Colored noise loading is again desirable to control the
near-in sidelobes [6]. As before, the identity matrices in
(16) may be replaced with the colored noise loading
matrix for initial loading and for WNGC loading to
control the sidelobes.

5. SIMULATION RESULTS
5.1. Simuation 1: Strong Wideband Jamming
In this simulation the environment is configured as shown
in Table 1, where the jamming environment is defined in
terms of jammer-to-noise ratio per element (JNR), cosine
cone-angle (CCA), beamwidths from broadside or time-
delay steered direction (BmWdths), degrees from
broadside (deg), source bandwidth in GHz (BW), source
center frequency in GHz (CF), and category (Cat), which
can either be mainbeam (MB), or sidelobe (SB).

JNR CCA BmWdths Deg BW CF Cat
10 dB 0 0 0 2 10 MB
10 dB -0.04 -4 -2 2 10 MB
10 dB 0.148 19 8.5 2 10 SB

Table 1: Strong Wideband Jamming

As shown in Figure 5, the strong jamming
overwhelms the sidelobes of the conventional
beamformer. Thus, the jamming consumes nearly the
entire angle space available to the radar.

Figure 5 TDCBF Response 1

Figure 6 TDCBF Response 2

Figure 7 and Figure 8 show the Subband ABF and

DBU-ABF results. These algorithms adaptively null the
jamming unless a beam is pointing directly at (or very
near) to a jammer. The DBU-ABF has a narrower jammer

extent, especially for the jammer located 4 beamwidths
left of broadside. Traces of grating lobe leakage for the
sidelobe jammer are evident in both figures. However, it
is more prominent with the Subband ABF algorithm.

Figure 7 SABF Response 1 Figure 8 DBU-ABF Response 1

5.1. Simulation 2: Mixed Bandwidth Jamming
This simulation mixes together jammers with various
bandwidths and center frequencies. Here, strong
wideband, halfband, and quarter-band jammers are
present with various center frequencies. Also, a strong
CW (tone) jammer is also present, as outlined in Table 3.

JNR CCA BmWdths Deg BW CF Cat
-10 dB -0.035 -4 -2 2 10 MB
-10 dB -0.017 -2 -1 1 10.25 MB
-10 dB 0.017 2 1 0.5 9.75 MB
-20 dB 0.035 -4 2 0 9.5 MB

Table 2: Mixed Bandwidth Jamming

Figure 6 shows the TDCBF response to the mixed
jamming scenario. Each of the 4 jammers are visible in
the figure, although the CW jammer is hard to see because
of its narrow bandwidth.

Figure 9 and Figure 10 compare the Subband ABF and
DBU-ABF results. The Subband ABF algorithm has
good frequency containment but worse spatial extent.
Furthermore, the ends of the frequency portions of each
jammer are distorted due to the subband band edges.

Figure 9 SABF Response 2 Figure 10 DBU-ABF Response 2

The DBU-ABF algorithm has better spatial extent,
but each of the colored jammers leaves behind a “wake”
of frequency. This is caused by the colored noise loading
trying to compensate for being close to the jammer angle.
The algorithm is trading off sidelobe suppression for a

close-in null, and some sidelobe leakage from the other
jamming sources is occurring. This may be corrected by
adjusting the colored noise loading parameters.

8. HARDWARE IMPLEMENTATION DESIGN

A design for a firmware-based implementation of the
DBU-ABF algorithm has been created and is under active
development as the next stage of this project. Figure 11
illustrates the FPGA design architecture for a single beam.
The design is based on having the input and output data
stream on and off the FPGA. Thus, the input data streams
onto the chip one range gate at a time, simultaneously for
each of the 16 proposed complex channels. Thus 16 real
and 16 complex 8-bit values will stream onto the device
each clock cycle. The output will be a single complex
value for each beam that streams off the device each clock
cycle. With this streaming architecture, the required
matrix operations are much simpler and require fewer
resources.

PCI-Express
Input Data

16 Channel
Streaming

FFT

Channel
Pre-Steer DBU Stack

Rank-1
Inverse
Update

16c x 1 16c x 1 16c x 1 32c x 1

Streaming Channel Input

After PRI Input

DBU Weight
Computation

Weight
Interpolation

DBU Inverse Covariance
(2xChannel) x (2xChannel)

32c x 32c

After PRI Input

Streaming Beam Output

DBU Center and
Derivative Weights

Channel x 2
16c x 2

External
RAM

Weight
Application

Channel x Freq(k)
16c x 1

PCI-Express
Output Data

1 x Freq(k)
1c x 1

Figure 11 FPGA firmware block diagram

The first step in the diagram is to convert the
incoming data into the frequency domain. A frequency
dependent pre-steering vector is applied to the incoming
data. Next, the data streams to an external dual-port RAM
that stores the pre-steered channel data until the ABF
weights have been computed. The RAM is dual-ported
such that data may be stored while data elsewhere in the
RAM maybe read. This allows concurrent input and
output data streams.

The next step in the input chain is to perform the
DBU stacking operation. This simply stacks the 16
channel data on top of itself creating a 32 channel vector,
where the bottom portion is multiplied by it’s frequency
index number, k . The final step in the input chain is to
accumulate the inverse covariance matrix for the current
PRI of input data. Once all the samples in a PRI have
streamed onto the device the DBU center and derivative
weight vectors are computed using (17). The data from
the PRI then begins to stream out from the external RAM
storage. Simultaneously, the weight vectors are
interpolated using (18) for the current frequency index.

Finally, the current frequency dependent weight
vector is multiplied against the data and summed over the
channel dimension forming the final scalar output value,
and data is streamed off of the device in the frequency
domain. If desired, a final streaming IFFT may be
inserted to convert the data back to the time-domain.

9. CONCLUSIONS
The wideband DBU-ABF algorithm is a robust algorithm
for wideband beamforming. In this paper we have
demonstrated that it offers several key benefits over
Subband adaptive beamforming in that it truly models the
wideband system, allowing it to linearly vary its
beamforming characteristics over frequency. Most
importantly, it provides narrower jammer extents than
Subband ABF with the same WNGC parameters. This
minimizes the area denied to the radar by interference or
jamming. Furthermore, it more accurately recovers the
jamming signal for potential follow-on use with
COMINT/SIGINT processing. A COTS FPGA
implementation design has been presented and is under
active development. Test results from this
implementation with real data will be presented in
subsequent papers.

10. REFERENCES

[1] J.D. Griesbach, “Optimal Taper Design for
Overlapped Subarray Formation”, Proceedings of the 40th
Asilomar conference on signals, systems, and computers,
Pacific Grove, CA, Oct. 29 – Nov. 1, 2006
[2] H.L. Van Trees, “Detection, Estimation, and
Modulation Theory, Part IV, Optimum Array Processing,”
Wiley, New York, NY, April 2002.
[3] S.D. Hayward, “Adaptive beamforming for rapidly
moving arrays”, CIE International Conference
Proceedings, IEEE, Beijing, China, , pp. 480 - 483, Oct.
1996
[4] J.D. Griesbach, “Adaptive Beamforming Techniques
for Sidelobe Control and Mitigation of Nonstationary
Interference”, in Proceedings of the Adaptive Sensor
Array Processing (ASAP) Workshop, MIT, Lexington,
MA, Jun. 2005
[5] M. Zatman, “Performance Analysis of the Derivative
Based Updating Method”, in Proceedings of the Adaptive
Sensor Array Processing (ASAP) Workshop, MIT,
Lexington, MA, Mar. 2001
[6] J.D. Griesbach, “Frequency-Domain Derivative-Based
Updating for Wideband Radar Adaptive Beamforming”,
in Proceedings of the Adaptive Sensor Array Processing
(ASAP) Workshop, MIT, Lexington, MA, May 2007

