

PNT as a Service (PNTaaS): Leveraging SATCOM for PNT

Dr. Alison Brown NAVSYS Corporation 14960 Woodcarver Rd, Colorado Springs, CO 80921 <u>www.navsys.com</u> (719) 481-4877 May 3, 2023

DFARS 252.227-7018 (MAY 2013) SBIR Data Rights

Contract Number W31P4Q-22-C-0007

NAVSYS Corporation, 14960 Woodcarver Road, Colorado Springs, CO 80921

Expiration of SBIR Data Rights Period: Expires five years after completion of project work for this or any other follow-on SBIR contract, whichever is later.

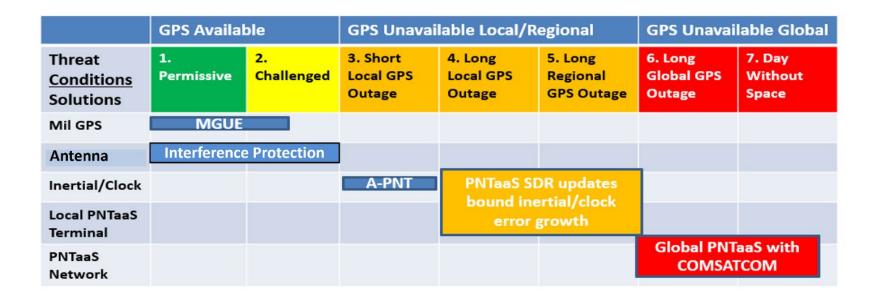
The Government's rights to use, modify, reproduce, release, perform, display, or disclose technical data or computer software marked with this legend are restricted during the period shown as provided in paragraph (b)(4) of the Rights in Noncommercial Technical Data and Computer Software—Small Business Innovation Research (SBIR) Program clause contained in the above identified contract. No restrictions apply after the expiration date shown above. Any reproduction of technical data, computer software, or portions thereof marked with this legend must also reproduce the markings. (End of legend)

Distribution Statement A: Approved for public release. Distribution is unlimited.

Position ■ Navigation ■ Timing

NAVSYS Overview

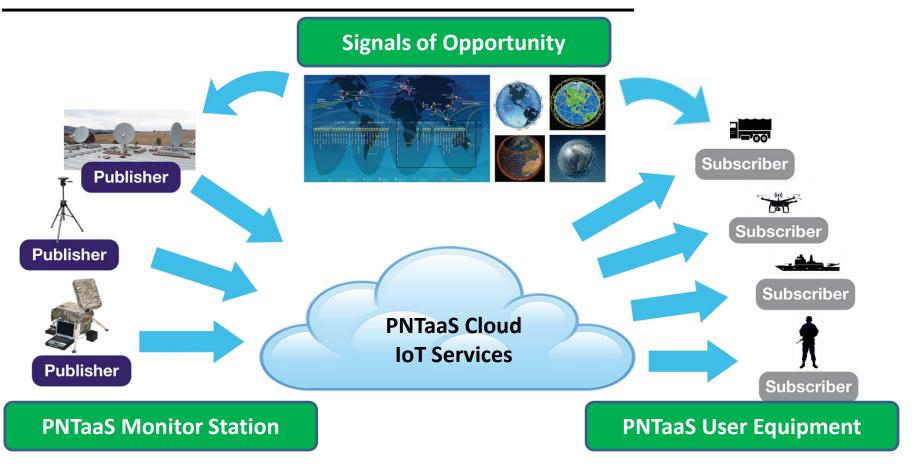
MISSION : To provide **specialized Positioning Navigation and Timing** (**PNT**) **products** and **services** for our customers by leveraging our core technologies, unique technical expertise, innovative engineering, strong work ethic, and high standards of excellence.



- Founded in 1986 by Dr. Alison Brown
- In top 10 companies receiving SBIR awards from DoD in Colorado and have high commercialization success rate for our SBIR projects
- Tibbets Award, Coggins Award, AFEI Award for Enterprise Integration

GPS Risk Levels

Signals of Opportunity (SoOP) provide means to bound inertial and clock error growth in absence of GPS


GNSS versus SATCOM Operation

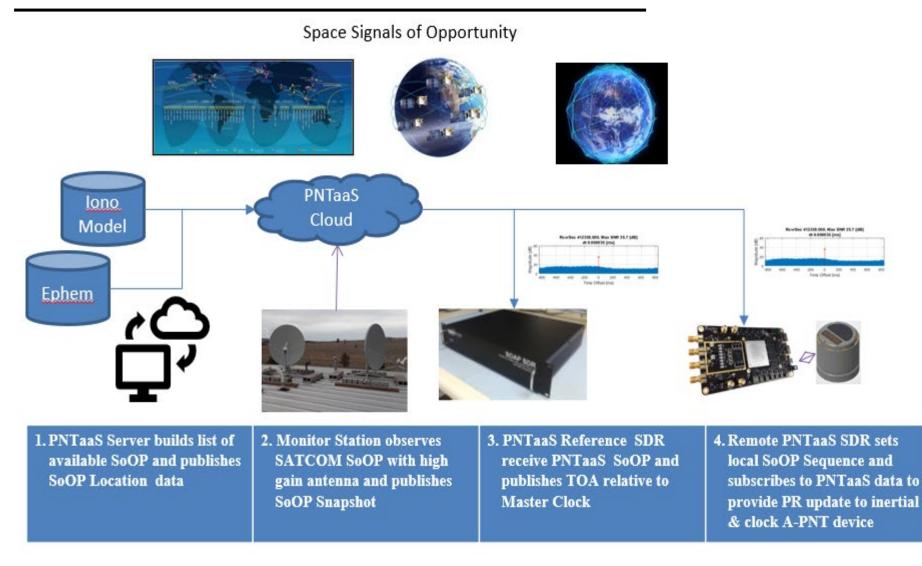
Space Segment	GNSS	SATCOM
Satellite Broadcast Power	L-Band: Pr = -158 dBW	C-band SATCOM: Pr = -159 dBw Ku-band SATCOM: Pr = -161 dBw
Frequencies	Limited allocations for PNT	Extensive COMSATCOM allocations
Signal Bandwidth	24 MHz	C/Ku-Band: 36 MHz
Modulation	PRN codes	Digital data
Time Stamps	Sync to onboard Atomic Clock	Asynchronous onboard
Data Modulation	50-100 bps	Full bandwidth
User Segment	GNSS	SATCOM
Antenna	Omni	Dish or Phased Array
Data Processing	Spread Spectrum provides processing gain and TOA	Modem provides digital data demodulation
Navigation	4 or more observations for PNT	n/a

PNT as a Service (PNTaaS)

GNSS vs PNTaaS

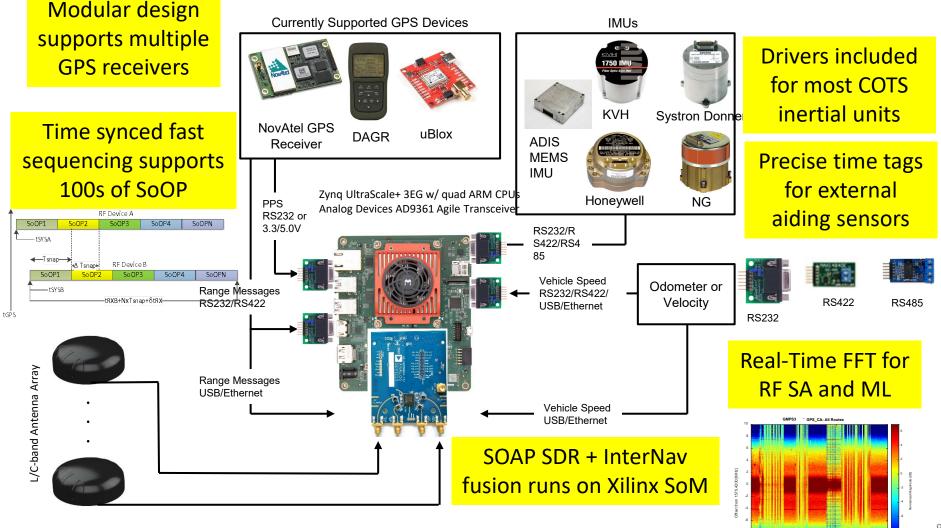
Space Segment	GNSS	PNTaaS	
Satellite Broadcast Power	L-Band: Pr = -158 dBW	C-band SATCOM: Pr = -159 dBw Ku-band SATCOM: Pr = -161 dBw	
Frequencies	Limited allocations for PNT	Extensive COMSATCOM allocations	
Signal Bandwidth	24 MHz	C/Ku-Band: 36 MHz	
Modulation	PRN codes Monitor publishes snapshots		
Time Stamps	Sync to onboard Atomic Clock	Monitor publishes TOA of snapshot	
Data Modulation	50-100 bps	Network access to PNTaaS data	
User Segment	GNSS	PNTaaS	
Antenna	Omni	Multiple Omni at different bands	
Data Processing	Spread Spectrum provides processing gain and TOA	Processing gain from PNTaaS snapshot correlation gives TOA	
Navigation	4 or more observations for PNT	Sequencing through multiple snapshots provides A-PNT updates	

GNSS versus SoOP Signals

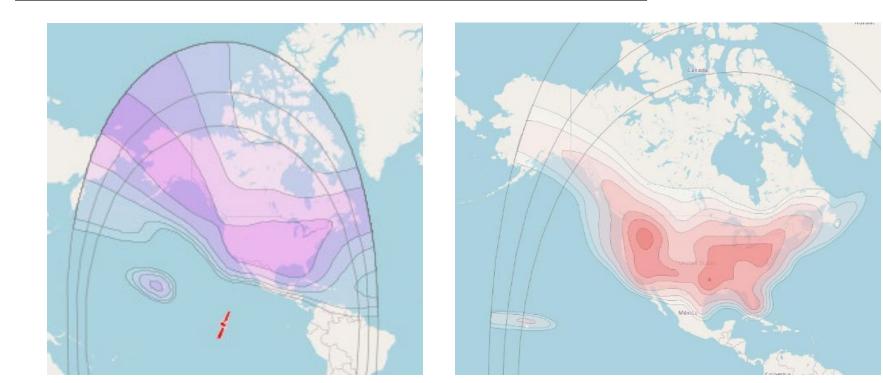


Band	Freq	SoOP	Orbit
L	1 – 2 GHz	GNSS, Iridium	MEO
		Inmarsat	GEO
S	2 – 4 GHz	GlobalStar	MEO
		TDRS	GEO
		COSMIC-2	LEO
С	4 – 8 GHz	Xona	LEO
		Intelsat, Telesat, SES, etc.	GEO
X	8 – 12 GHz	WGS, Skynet	GEO
Ku	10.7–12.7 GHz	OneWeb, SpaceX	LEO
	12 – 18 GHz	DBS, Viasat	GEO
Ка	17.8-18.6 GHz	Telesat, Kuiper, O3B	LEO
		ViaSat, Telesat	GEO

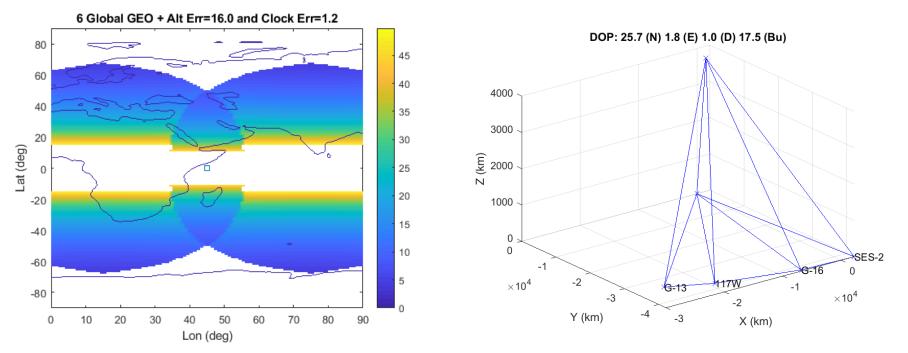
Existing SATCOM systems have many more frequency allocations than GNSS


PNTaaS CONOPS

SoOP Open Architecture PNT (SOAP) SDR

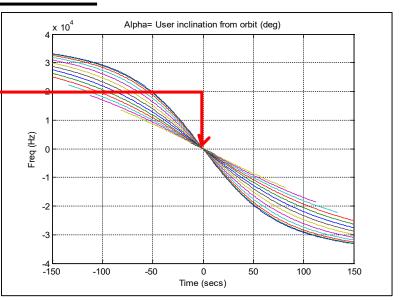


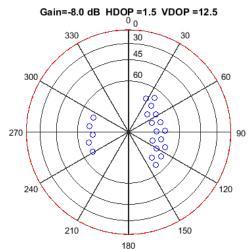
9


Example GEO SoOP Footprints

GALAXY-30 (C-Band) ~ 38 dB-Hz C/N0 (20 MHz BW) SES-2 (Ku-Band) ~ 38 dB-Hz C/N0 (20 MHz BW)

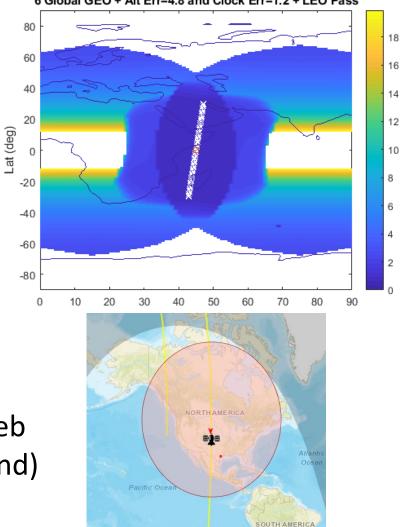
PNTaaS GEO-only Geometry


- GEO-only can support PNT with altitude aiding but North/Clock DOP is weaker
- Geometry improves with clock calibration at start & precision clock
- Benefits of GEO SoOP are persistent coverage


NAVSYS Corporation

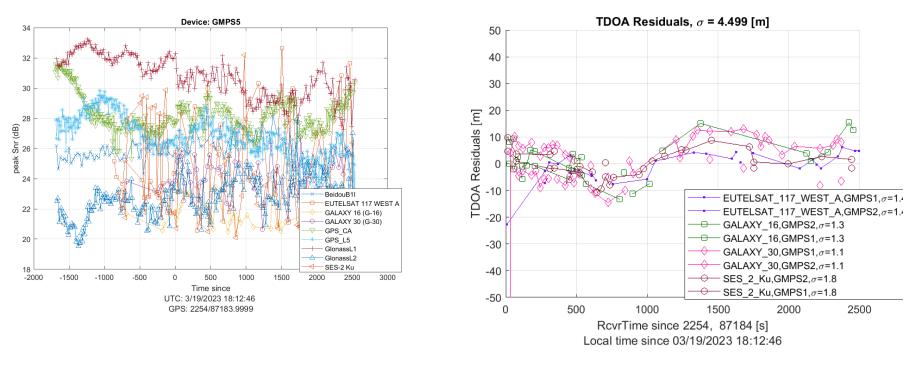
LEO PNT Observation Geometry

- Doppler tracking of LEO SV "transit" across the sky gives 2DOF
 - Time of closest point in transit (θ)
 - Doppler Rate of change at θ gives declination from orbit (α)
- User's inertial/clock solution needs 4D geometry to correct PNT offset
 - 2 SV transits (4DOF)
- Example of LEO "Transit" Geometry
 - In 5 minutes => HDOP=1.5 using multi-plane Doppler only updates (e.g. Starlink, OneWeb)
 - TOA from known code adds additional observation (e.g. STL, Xona)

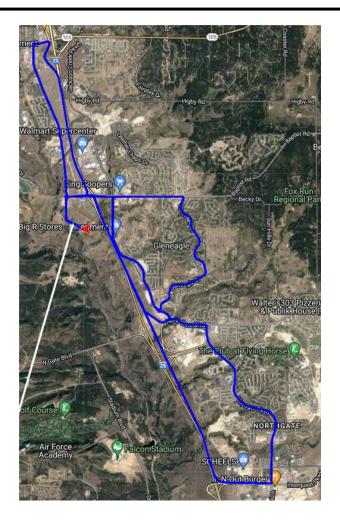


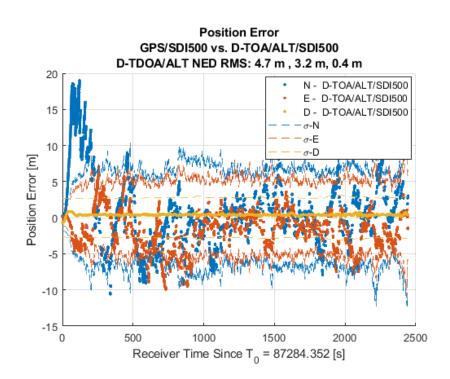
PNTaaS GEO/LEO Geometry

- GEO + occasional LEO pass "transit" will provide 4D geometry
- Benefits are global coverage and periodic clock calibration
- Doppler-only updates are sufficient when have an accurate SDR clock


Example OneWeb Footprint (Ku-Band)

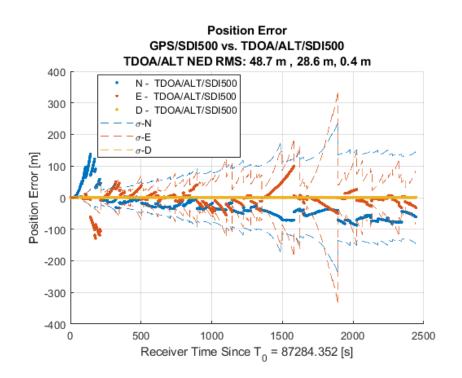
6 Global GEO + Alt Err=4.8 and Clock Err=1.2 + LEO Pass

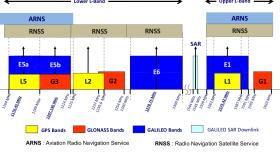

SoOP Snapshot Observations



- 85 msec snapshots at 20 Msps
- C-Band: GALAXY 16, GALAXY 20
- Ku-Band: SES-2 EUTELSAT 117

GEO + MEO PNTaaS Results




GEO + Alt only PNTaaS Results

- Accuracy is a function of inertial and clock
 - SDI1500 IMU
 - Wenzel OCXO
 - < 150 meters steady state</p>
- Accuracy would improve with a CSAC
 - ~11 m/hr of drift

PNTaaS Solution Benefits

Problem/Opportunity

All GNSS signals are in L-band (1.1-1.6 GHz) and are vulnerable to interference. Delivering Enterprise PNT provides opportunity for a global PNT backup capability services leveraging existing commercial satellite and terrestrial signal sources as SoOP accessing frequency allocations from 3-30 GHz.

Proposed Solution

PNTaaS provides data services to enable use of commercial broadband GEO, MEO and LEO satellite systems as SoOP. Massive constellation size and different frequency ranges provides PNT resilience. Working with commercial partners allows for global delivery of PNTaaS leveraging existing SATCOM constellations and ground infrastructure.

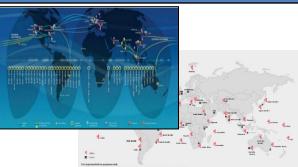
Impact

FCC reports 194 approved GEO satellites and 43 approved NGSO systems with 4,408 satellites from SpaceX, 720 satellites from OneWeb 117 satellites from Telesat, 66 satellites from Iridium, and 42 satellites from O3B with thousands more launches planned.

PNTaaS Commercial Service Components

PNTaaS Monitor

Global Deployment

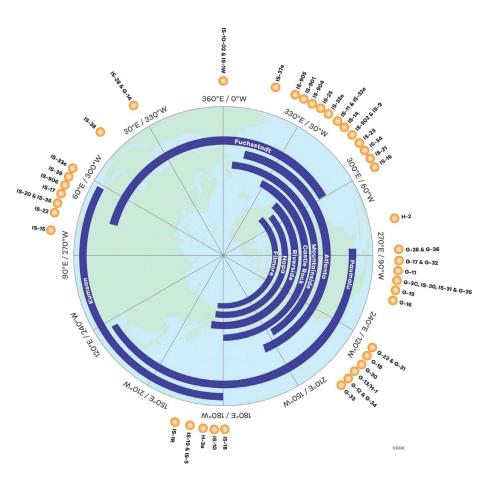


PNTaaS Monitor Stations

- PNTaaS Monitor SDRs being sold for deployment and integration into SATCOM ground stations
- Compatible with multiple satellite constellations, both GEO and NGSO L, C and Ku-Band frequencies
- NAVSYS has sold over 2,000 A-PNT commercial product licenses (B2B)

InterNav A-PNT SW + SOAP SDR

 SoOP Open Architecture (SOAP) SDR being offered to our customers under license for PNTaaS applications



IntelsatOne , Viasat and OneWeb Global Satellite Network Portals

 NAVSYS is working with multiple SATCOM service providers (GEO and NGSO) to integrate PNTaaS SDRs into their global satellite network portals to offer PNTaaS data for commercial and DoD markets

IntelSatOne Global Network

<u>Castle Rock Teleport</u>

Visible Arc

$28^{\circ}W - 180^{\circ}W$

Intelsat Satellites in the Visible Arc

- $\underline{\text{IS-18}} \cdot \underline{\text{G-15}} \cdot \underline{\text{G-12}} \cdot \underline{\text{G-13}} \cdot \underline{\text{H-1}}$
- $\underline{\textbf{G-14}} + \underline{\textbf{G-18}} + \underline{\textbf{G-16}} + \underline{\textbf{G-19}} + \underline{\textbf{G-3C}}$
- $\underline{\text{IS-30}} \cdot \underline{\text{IS-31}} \cdot \underline{\text{G-25}} \cdot \underline{\text{G-17}} \cdot \underline{\text{G-28}}$
- $\underline{\text{IS-21}} \cdot \underline{\text{IS-34}} \cdot \underline{\text{IS-25}} \cdot \underline{\text{IS-23}} \cdot \underline{\text{IS-1R}}$
- $\underline{\text{IS-14}} \cdot \underline{\text{IS-11}} \cdot \underline{\text{IS-32e}} \cdot \underline{\text{IS-35e}}$

<u>G-23</u> · <u>G-11</u> · <u>IS-5</u>

- Constellation is 100% deployed (618 operational satellites)
- 30 on-orbit spare satellites scheduled to be launched 10 May
- Orbit raising and check-out will continue through Q3/Q4 CY2023

Launch #19 (Scheduled)

Launch Date: 10 May 2023 Launch Site: Vandenberg CA Payload: 30 OneWeb Satellites Launch Vehicle: Falcon 9 (Space X) Space Vehicles:#s 619-648

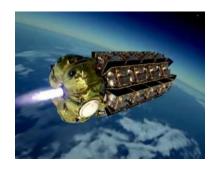
Launch Date: 8 December 2022

Launch Site: Florida Pavload: 40 OneWeb Satellites

Launch Vehicle: Falcon 9 (Space X) Space Vehicles:#s 463-502

Launch #16 (Complete)

Launch #15 (Complete)


Launch Date: 10 January 2023 Launch Site: Florida Payload: 40 OneWeb Satellites Launch Vehicle: Falcon 9 (Space X) Space Vehicles:#s 503-542

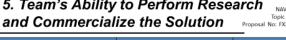
Launch #17 (Complete)

Launch Date: 10 March 2023 Launch Site: Florida 40 OneWeb Satellites Pavload: Launch Vehicle: Falcon 9 (Space X) Space Vehicles:#s 543-582

Launch #18 (Complete)

Launch Date: 26 March 2023 Launch Site: Satish Dhawan Space Ctr 36 OneWeb Satellites Payload: Launch Vehicle: Polar Sat (New Space India) Space Vehicles:#s 583-618

OneWeb Technologies / NAVSYS Partnering effort extends **beyond** Defense to the Commercial market.


- Extensive, worldwide OneWeb ground infrastructure provides global opportunity for PNTaaS signal correlation and cloud update.
- Constellation polar orbit provides dense, persistent far north (and far south) coverage. 5. Team's Ability to Perform Research NAVSYS Corporatio
- OneWeb business model encompasses both B2Gand B2B.
- Existing commercial contracts and interest:
 - Long-haul logistics and warehousing
 - **Commercial maritime**
 - **Energy development (at-sea and ashore)**
 - Utilities
 - Law enforcement

- Strategic Capability Area: Resilient Information Sharing
- Identifies need for Resilient PNT in even GPS denial of service APNT/Space CFT Tactical Space Laver
- and NAVWAR A-CDD identifies need for Alternative Nav (ALTNAV) solutions
- DoD Alternative Navigation (ALTNAV) solutions in development include: SDA Tranche1, NTS-3
- Software Defined UE and A-PNT program (MAPS, EGI-M, GPNTS) will support
- ALTNAV signals Commercial PNT as a Service solution will dramatically increase PNT resilience
 - PNTaaS solution will provide access to 1000s of additional PNT SoOP sources through resilient information sharing

Use or disclosure of data contained on this page is subject to the restriction on the first page of this volum

- PNTaaS has been funded through:
- Commercial IR&D investment DARPA, Navy, and Air Force SBIR funding

NAVSYS Services	NAVSYS Licenses	Infrastructure
PNTaaS Stations at NAVSYS	InterNav A-PNT SW + SOAP SDR	IntelsatOne and OneWeb Global Satellite Network Portals
Developed PNTaaS	Over 2,000 software	 Intelsat and OneWeb are
Technology using IR&D	licenses sold for A-PNT	partners on Phase I and
and SBIR funding	commercial products	will provide access to
 Have demonstrated using 	SoOP Open Architecture (COAD) CDD hains affered	their global satellite
multiple satellite	(SOAP) SDR being offered	networks (GEO and
constellations, both NEO	as an upgrade	NGSO) to offer
and NGSO on	 Multiple manufacturing 	commercial PNTaaS data
frequencies from L to C-	partners established for	 Testing is underway with
Band	the SOAP SDR	other satellite providers

OneWeb Technologies Inc. (OWT) Subject to terms on presentation cover.

Conclusions

- PNTaaS provides precision PNT in the absence of GPS leveraging existing SATCOM as SoOP
- PNTaaS accuracies approach GPS (~ 5 m RMS) with sufficient signals and geometry
- SATCOM frequencies (3-30 GHz) provide resilience in presence of interference
- PNTaaS Reference integration with Master clocks at USNO and NIST will tie PNTaaS master time to GPS
- Proposing to government sponsors a pilot program to allow performance evaluation of PNTaaS including Monitor station installations with multiple commercial SATCOM providers leveraging PNTaaS open architecture services

Reference

• A. Brown, D. Nguyen, J. Redd, T. Silva, S. Huerta, A. Linan, J. Passehl, "PNT as a Service (PNTaaS): Providing a Resilient Back-up to GPS by Leveraging Broadband Satellite Constellations and Ground Infrastructure," IEEE/ION PLANS 2023, Monterrey, CA, April 27, 2023.