Mathematical Aspects of GPS RAIM

Two Results on Integrity Monitoring and Fault Detection

Frank van Diggelen and Alison Brown

NAVSYS Corporation

PLANS `94 April 11-15, 1994, Las Vegas, NV

navsys

Two new theorems will answer two questions about RAIM and the least squares navigation solution.

- (1) What can be achieved by RAIM from a snapshot of data?
- (2) What is the relationship between the two nav solutions obtained by
 - (a) excluding a biased measurement ("active" RAIM)
 - (b) including the biased measurement but compensating for its effect using RAIM techniques ("passive" RAIM)

Background Least Squares Navigation Solution Error & Fault Vector

Standard measurement equation:

$$z = Hx + e$$

Least squares solution:

$$\widehat{x} = H^* z$$
where
$$H^* = (H^T H)^{-1} H^T$$

Navigation error:

$$d := \hat{x} - x$$

$$= H^* z - x$$

$$= H^* (Hx + e) - x$$

$$= H^* e$$

Fault vector:

$$f := Sz$$
where $S := I - HH^*$

$$f := S(Hx + e)$$

$$= Se$$

Theorem 1: Independence of f and d

Question:

Given a snapshot of measurements, is it ever possible to determine the navigation error from the fault vector?

Answer:

No.

Theorem:

Consider the measurement equation, *f*, and *d*.

$$z = Hx + e$$

 $f := Sz$
 $d := \widehat{x} \cdot x = H^{\dagger}e$

If the elements of *e* are IID random variables, then *f* is statistically independent of *d*.

Theorem:

e IID \Rightarrow f is independent of d.

Proof:

svd of H:

$$H = U \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} V^T$$

$$H^* = V[\Sigma^{-1} \ 0]U^T$$

$$S = I - HH^{*}$$
$$= U \begin{bmatrix} 0 \\ I \end{bmatrix} \begin{bmatrix} 0 & I \end{bmatrix} U^{T}$$

$$f = Se$$

= $U\begin{bmatrix} 0 \\ I \end{bmatrix} \begin{bmatrix} 0 & I \end{bmatrix} U^T e$

$$d = H^* e$$
$$= V[\Sigma^{-1} \ 0] U^T e$$

$$\tilde{e} := \begin{bmatrix} \tilde{e}_1 \\ \tilde{e}_2 \end{bmatrix} := U^T e$$

$$f = U \begin{bmatrix} 0 \\ I \end{bmatrix} \tilde{e}_2$$
, $d = V \Sigma^{-1} \tilde{e}_1$

Background Math, Active RAIM Fault (Parity) Vector & Error Estimate

$$z_{0i} = \mathsf{H}_{0i} x + e_{0i}$$

$$f = Se$$

 $f_i = S_{i \bullet} e$

$$\hat{e} = \begin{vmatrix} 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{vmatrix}$$

$$\hat{e}_i = \frac{f_i}{S_{ii}}$$

$$\hat{d} = H^{*}\hat{e}$$

$$= H^{*}_{\bullet i} \hat{e}_{i}$$

$$= H^{*}_{\bullet i} \frac{S_{i\bullet}}{S_{ii}} e$$

Theorem 2: Equivalence of active & passive RAIM

Consider the three navigation solutions

 $\hat{x} := H^*z$

biased nav solution

 $\hat{x}_{RAIM} := \hat{x} - \hat{d}$ compensated solution (passive RAIM)

 $\hat{x}_{0i} := H_{0i}^* z_{0i}$ unbiased solution (active RAIM)

Question:

What is the relationship between \hat{x}_{RAIM} and \hat{x}_{o_i} ?

Answer:

They are identical.

Theorem:

$$\hat{x}_{RAIM} = \hat{x}_{Oi}$$

Proof needs a lemma and its corollary.

Lemma:

$$H_{0i}^{\star} = H^{\star} - H^{\star}_{\bullet i} \frac{S_{i\bullet}}{S_{ii}}$$

Corollary:

The *i*th column of H_{0i} equals zero.

Theorem:

$$\hat{x}_{RAIM} = \hat{x}_{0i}$$

Proof:

$$\hat{x}_{RAIM} := \hat{x} - \hat{d}$$

$$= H^* z - H^* \bullet_i \frac{S_{i \bullet}}{S_{ii}} e$$

$$= H^* (Hx + e) - H^* \bullet_i \frac{S_{i \bullet}}{S_{ii}} e$$

$$= x + (H^* - H^* \bullet_i \frac{S_{i \bullet}}{S_{ii}}) e$$

$$\hat{x}_{0i} = H_{0i}^* z_{0i}$$

$$= H_{0i}^* (H_{0i}x + e_{0i})$$

$$= x + H_{0i}^* e_{0i}$$

$$= x + H_{0i}^* e$$

Recall Lemma:

$$H_{0i}^{\star} = H^{\star} - H^{\star}_{\bullet i} \frac{S_{i\bullet}}{S_{ii}}$$

Using the lemma, the coefficients of e are equal.

Example (from the GPS Toolbox for Matlab)

» help raimdemo raimdemo

function to run Isnav.m with some real data collected at Wallops Island, VA, USA

The user has the option of corrupting one of the pseudo-ranges with a bias,

raim.m is then run to try and detect the bias and its effect on the navigation solution.

This demo illustrates the use of raim.m with Isnav.m » raimdemo

There are 8 satellite measurements, from satellites: 2, 7, 13, 14, 15, 19, 27, 31

With elevations (in degrees): 71, 49, 21, 20, 41, 16, 37, 5

Select a satellite to bias :2

Select the bias in meters :100

A bias of 100m has been added to satellite 2

Navigating, using only the 7 unbiased satellites

Navigating using all 8 satellites, with RAIM to detect bias

and correct navigation error

Hit any key to continue

Correcting the biased solution with the RAIM estimate of the error

Example (from the GPS Toolbox for Matlab)

Altitude of aircraft vs time, Unbiased solution (---) and biased solution (---)

Altitude vs time. Unbiased solution (—) & RAIM corrected biased solution (+)

raim.m found the correct bias 100% of the time, Bhat = 115.451m

Example (from USCG R&D Field Test)

Conclusion

Theorem 1:

It is essential to take an ensemble of measurements to predict the precision of the nav solution.

Theorem 2:

If a biased measurement is detected, it is just as good to correct the biased nav solution as to exclude the measurement before making the nav solution.